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Theory and applications of an alternative lattice Boltzmann grid refinement algorithm
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This contribution proposes an alternative lattice Boltzmann grid refinement algorithm that overcomes the
drawbacks that plague existing approaches. We demonstrate that this algorithm is accurate and applicable for
all values of the relaxation time. We also show that this algorithm can significantly speed up the flow settle-
ment process. By using a hierarchy of grid levels, the stationary regime can be approached up to a thousand
times faster than with a single grid resolution.
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I. INTRODUCTION

The lattice Boltzmann~LB! models are rather differen
numerical techniques aimed at modeling a physical system
terms of the dynamics of fictitious particles@1,2#. This
method is now considered as a serious alternative to stan
computational fluid dynamics@3#. The main idea of this ap
proach is to model the physical reality at a mesoscopic le
the generic features of microscopic processes can be
pressed through simple rules, from which the desired ma
scopic behavior emerges as a collective effect of the inte
tions between the many elementary components.

Originally, the LB models are built on regular lattices.
order to resolve the fluid flow with enough accuracy, one
tempted to use a very fine lattice, thus requiring more co
puting resources. However, with irregular flows, high g
resolution is only needed in some specific regions. Refin
the lattice locally, where more precision is needed, may t
represent a significant improvement. In order to connect
two scales, an algorithm allowing us to pass on the res
simulated on the fine lattice to the coarse one and vice v
is necessary. Existing published algorithms present so
weaknesses. Here, we propose an alternative, more ge
and yet simpler technique which we validate with a sim
flow.

We then apply our lattice refinement technique to sp
up the flow settlement process. Settling a flow is definitel
complicated and a necessary step@4,5#, as the time needed t
reach a stationary regime from an arbitrary initial conditi
is generally not negligible. Hence, decreasing the duratio
the transient stage is an issue of great interest.

The paper is organized as follows. First, in Sec. II,
recall the fundamentals of the LB models. Section III sta
to describe existing refinement algorithms and then pres
our approach that is compared to the existing ones. Then
present in Sec. IV an algorithm allowing us to speed up
flow settlement process. Depending on the desired accu
a CPU gain of about 1000 can be achieved. Finally, we d
some conclusions.

II. LATTICE BOLTZMANN MODELS

A LB fluid is described by density distribution function
f i(r ,t) giving the probability that a fictitious fluid particle
with velocity vi enters the lattice siter at a discrete timet. At
1063-651X/2003/67~6!/066707~7!/$20.00 67 0667
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each time step, the pseudoparticles entering the same
collide, i.e., the corresponding density distributions intera
Then, the resulting distribution functions are moved to t
neighboring sites, mimicking the motion of the pseudop
ticles.

The admissible velocitiesvi , of componentv ia , are de-
pendent on the lattice topology. Usually,i runs between 0
and z, wherez is the lattice coordination number~i.e., the
number of lattice links!. By conventionv050 and f 0 repre-
sents the density distribution of particles at rest. For ma
lattice topologies the set of vectorsvi can be divided into
slow and fast velocities: slow velocities correspond to a ju
to a nearest neighbor site while fast velocities imply a jum
to a second nearest neighbor.

As explained above, the dynamics of a LB model alt
nates between collision and propagation phases. It is so
times necessary to distinguish the density distributions
fore collision and after collision. For instance, som
quantities such as the stress tensor take different value
measured before or after the collision process. Thus, we
fine f i

in5 f i as the precollision value andf i
out as the new value

after the collision process. After the propagation step,
postcollision values become precollision distributions at
nearest neighbors,

f i
in~r11Dtvi ,t1Dt !5 f i

out~r ,t !. ~1!

In the so-called Bhatnagar-Gross-Krook~BGK! model
@1,6,7#, the collision step is computed as

f i
out~r ,t !5 f i

in~r ,t !1
1

t
@ f i

eq~r ,t !2 f i
in~r ,t !#1

Dt

v2C2
vi•G.

~2!

These two equations define the dynamics of a LB fluid. T
quantityDt is the time step of the simulation,G is a possible
body force,t is the relaxation time, andf i

eq is the local equi-
librium which is a function of the densityr5( i 50

z mi f i
in and

the fluid velocity u defined through the relationru
5( i 50

z mi f i
invi . The quantitiesmi are weights associate

with the lattice directions andC2 is a geometrical constan
defined as( i 51

z miv iav ib5v2C2dab .
©2003 The American Physical Society07-1
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TABLE I. Constants of the most commonDdQ(z11) lattices, whered is the spatial dimension andz is
the number of link,vi is the velocity on linki andmi are the weights associated with each link.

Models

Slow velocities Fast velocities

uvi u mi uvi u mi C0 C2 C4 cs
2

D2Q7 v 1 6 3 3
4

1
4

D2Q9 v 4 &v 1 20 12 4 1
3

D3Q15 v 1 )v 1
8 7 3 1 1

3

D3Q19 v 2 &v 1 24 12 4 1
3
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It can be shown~see, for instance, Refs.@2,8,6#! that Eqs.
~1! and ~2! reproduce a hydrodynamic behavior if the loc
equilibrium functions are chosen as follows~Greek indices
label spatial coordinates!:

f i
eq5rF 1

C2

cs
2

v2 1
1

C2

v iaua

v2

1
1

2C4v4 (
ab

S v iav ib2v2
C4

C2
dabDuaubG ,

~3!

f 0
eq5rF12

C0

C2

cs
2

v2 1S C0

2C2
2

C2

2C4
D u2

v2 G .
Table I gives the values of the coefficientsCk and the

weights mi for a few standard lattice topologies note
DdQ(z11), whered is the spatial dimension. The quanti
v gives the speed unit that corresponds to the modulus o
slow velocities, i.e.,v5Dr /dt, whereDr is the lattice spac-
ing.

Then Eqs.~1! and ~2! are equivalent to the continuit
equation and Navier-Stokes equation with speed of souncs
and viscosity

n5Dtv2
C4

C2
S t2

1

2D . ~4!

The two free parameters arecs and t. An obvious con-
straint on these parameters is that thef i ’s and the viscosity
remain positive, which implies thatt.0.5 and cs

2

,(C2 /C0)v2. A commonly chosen value forcs is cs
2

5v2(C4 /C2).
A relaxation timet close to 0.5 implies a small viscosit

but also, if the lattice spacing is not fine enough, some
merical instabilities. To solve the problem, one can have
course to a turbulence model which, roughly, computes
effects of the unresolved scales on some physical quant
~see Refs.@9,4,1# for details!. To simulate low viscosities
one can also consider refining the lattice.

III. A MULTIGRID ALGORITHM

A local lattice refinement consists in refining the latti
spacing (Dr ) in order to simulate smaller scales or, simp
to get more precision. Computational time being related
the lattice size, an improvement consists in refining the
tice locally by defining a coarse lattice everywhere and
06670
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defining a fine lattice where extra accuracy is needed. O
consequently needs an algorithm to connect coarse and
lattices.

A. Existing approaches

A well-known grid refinement model is the one due
Filippova and Ha¨nel @10#. This scheme proposes the follow
ing relations between the fields of the fine and the coa
lattice:

f i
out,c5 f i

eq,f1~ f i
out,f2 f i

eq,f !
nref~tc21!

t f21
,

f i
out,f5 f̃ i

eq,c1~ f̃ i
out,c2 f̃ i

eq,c!
t f21

nref~tc21!
, ~5!

where f̃ i denotes the spatially and temporally interpolat
value of the coarse grid fields. The indicesc and f indicate
quantities belonging to the coarse or the fine lattice, resp
tively. Finally nref is the ratio between the coarse and the fi
lattice spacing, i.e.,nref5Dr c /Dr f .

Another approach to grid refinement is the one by Lin a
Lai @11#. It proposes a simpler algorithm without considerin
a rescaling of thef i ’s. The authors argue that the fieldsf i are
interchangeable after the streaming step.

Two major remarks on the existing models presen
above have to be made. First, Eqs.~5! of the Filippova model
present a singularity whent51, which reduces the genera
ity of the model. Also, the proposed transformation is unn
essarily complicated~see below!.

Second, Lin’s model is inaccurate as it considers the fie
as interchangeable. This is not the case~although the differ-
ence between coarse and fine fields is small!, due to the
nonequilibrium part of the distribution function.

The grid refinement technique we propose in the follo
ing section offers an accurate scheme that does not ne
the nonequilibrium parts of thef i ’s. In addition, it is simpler
than Filippova’s one and has no singularity fort51.

B. Our grid refinement algorithm

In order to have the same molecular velocities (v) on
different lattices, we choose to keep constant the ra
Dr /Dt. This choice implies that the time stepDt changes
from one grid level to the other but thatu is identical on all
lattices.
7-2
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On the other hand, this specific choice requires to mod
the relaxation timet in order to keep the viscosity consta
across the grids. Hence, the relaxation time on a fine lattic
computed using Eq.~4! as

t f5
Dr c

Dr f
S tc2

1

2D1
1

2
, ~6!

where indicesc and f denote coarse and fine quantities, r
spectively.

We now describe our algorithm. A field can be deco
posed into its equilibrium and nonequilibrium parts@2# as

f i
in5 f i

eq1 f i
neq. ~7!

Let us examine them. First, Eqs.~3! show that the equi-
librium part is a function ofr andu. It is neither dependen
on Dr nor on Dt and is, neglecting discretization error
identical on lattices with different resolution. Second, t
nonequilibrium part can be written as@2#

f i
neq5

Dtt

C2v2 S (
gd

v igv id]grud2cs
2 div (ru) D[DttC~r,u!,

~8!

whereC(r,u) is a function ofr, u and their derivatives only
The quantities depending onr andu are identical on lattices
of different scales asr andu are lattice blind. Consequently
only the coefficientDtt in front of the nonequilibrium part
has to be rescaled when one wishes to connect different
tices.

It follows that one can express a relation between fields
different lattices as

f i
eq,f5 f i

eq,c5 f i
eq. ~9!

Considering Eq.~8! and the fact thatC(r,u) is identical
on both lattices, the following relation between nonequil
rium distributions can be written:

f i
neq,f5

Dt ft f

Dtctc
f i

neq,c5
t f

nreftc
f i

neq,c . ~10!

Combining Eqs.~9! and~10!, one can easily express ho
to transform coarse to fine fields:

f i
in,c5 f i

eq1 f i
neq,c5 f i

eq1 f i
neq,f nreftc

t f

5 f i
eq1~ f i

in, f2 f i
eq!

nreftc

t f
. ~11!

Similarly one can express the fine field transformatio
Hence, fields are transformed by the following relations:

f i
in,c5 f i

eq1~ f i
in, f2 f i

eq!
nreftc

t f
,

f i
in, f5 f̃ i

eq1~ f̃ i
in,c2 f̃ i

eq!
t f

nreftc
, ~12!
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where f̃ i denotes the spatially and temporally interpolat
value of the coarse grid fields. In our approach we use
same interpolation scheme as proposed by Lin@11#. We refer
the reader to this reference in which this rather techn
aspect of the method is well explained.

In summary, our approach rescales the incoming fie
while the one by Filippova and Ha¨nel rescales the outcomin
fields. Ours has the advantage of being more general than
one of Filippova and Ha¨nel @10# as the singularity arising
when t51 is not present anymore. Moreover, the collisi
operator is applied also on the boundary of finer lattic
which is not the case in the Filippova model. Finally, o
method is obviously more accurate than the simple one p
posed by Lin and Lai@11#, which does not consider the non
equilibrium part of the distribution.

The following section is devoted to the validation of o
approach and to the numerical comparison of the three te
niques presented here.

C. Validation

1. Field decomposition

We start by highlighting the field decomposition into a
equilibrium and a nonequilibrium part. For that, we consid
a D2Q9 lattice with a BGK~LBGK! model Poiseuille flow
on a channel of lengthL and diameterD51.0, accelerated by
a constant body force.

Space is discretized on a longitudinally periodic lattice
size Nx3Nz511333 so that L5NxDr and D5(Nz
21)Dr . The fact that the number of lattice pointsNx andNz
do not contribute the same way to the physical sizeL andD
is because thex axis is periodic while thez axis is closed by
two walls.

We now consider a refinement factornref52, that is, a
lattice of size 22365. Since the system is periodic along th
x axis, and the dynamics invariant under a horizontal tra
lation, Nx is irrelevant, we may as well consider a system
lengthL/2. Thus, in order to save CPU time, we again ta
Nx511.

The flow is settled by imposing a constant body forceG
5(Gx,0). With the definition

gi5
miDt

v2C2
G•vi ,

we choose gi
c53.7531024(mi /36)v ix and gi

f51.875
31024(mi /36)v ix .

At the upper and lower walls, we use the so-called In
muro nonslip boundary conditions@12#. We set the viscosity
n50.005 and the maximum velocityUc50.1. With relation
~4!, one can then easily compute relaxation times which
equal totc50.98 andt f51.46 for the coarse and the fin
lattice, respectively.

The nine fields f i are measured at the point (x50,y
5D/4) common to both lattices. As expected, their equil
rium parts are identical up to the discretization errors~i.e.,
u f i

eq,f2 f i
eq,cu,1028). Thus, we focus our attention on th

nonequilibrium part of the fields which is computed asf i
neq
7-3



o
rs
m
on

th

he
th
g.
n
w

is
i.
i

ui

t the
nted
oes
ula-

ce

g a
rse

a
on-

oth

s,

m-
’s

case
in

for
ur
uta-

e-
Lin
ror.
the
rea

ta-
ally
t is

ruc-

s
-
s

ul
bo
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5 f i* 2 f i
eq, where the symbol* stands forin or out and

indicates if this part is computed considering the incoming
the outcoming fields, i.e., using Filippova’s model or ou
We then talk about incoming or outcoming nonequilibriu
part. Note that when nothing is specified the incoming n
equilibrium part is considered.

We simulate the stationary flow on the coarse and on
fine lattice. The two sets of transformation equations~12!
and ~5! are used to switch from coarse to fine fields. T
results simulated on the fine lattice are used to check
accuracy of each method. The results are presented in Fi
Notice that both transformation equations, Filippova’s a
ours, produce accurate results. In the following section,
will see that Filippova’s scheme no longer works fort close
to 1. Finally, we observe that the nonequilibrium part
rather small. It represents a small percentage of the total,
f i

neq/ f i'1024!1. It is probably the reason why Lin and La
neglect this part.

From this first validation, we conclude that the noneq

FIG. 1. Prediction of coarse from fine nonequilibrium fields u
ing ~a! our transformation and~b! Filippova’s transformation equa
tions, see Eqs.~12! and~5!, respectively. Applying transformation
~12! and ~5! on the solid lines, one obtains the dots~circles and
squares!. If the proposed transformations are correct one sho
obtain the dashed lines. We observe accurate transformation in
cases.
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librium part is nonzero and depends onDr andDt. Hence,
one has to rescale it to use the values of one lattice to se
values on another. Thus we see that the Lin model prese
above misses some aspects of the LBGK models as it d
not consider a rescaling process. Depending on the sim
tion ~e.g., if gradients are large!, it can be prejudicial to use
this simplistic model.

2. Local refinement of a Poiseuille flow

We continue our validation by considering a local latti
refinement. Consider again a LBGKD2Q9 Poiseuille flow
on a coarseNx3Nz510317 lattice which is longitudinally
periodic. The coarse lattice is locally refined by considerin
10315 patch that refines the first seven sites of the coa
lattice alongz direction. The flow is settled by applying
constant body force and the Inamuro nonslip boundary c
dition @12#. The diameter of the channelD51.0, the velocity
in the center of the channel isUc50.1. In order to highlight
the singularity aroundtc51 in the Filippova model, we
choosetc51.06e1 .

Using the above algorithms we simulate the flows on b
lattices. Missing fields of the fine lattice on the top layer~i.e.,
z5143Dr f) are then determined by the coarse ones.

With the considered Inamuro’s boundary condition
simulation results on any~complete! lattice differ from the
theoretical ones only by the numerical precision of the co
puter ~considering a Poiseuille flow, recall that Inamuro
condition produces exact results!. Hence, the results of the
coarse lattice can be considered as exact. This is not the
for the results of the fine lattice as it is not complete. So
order to check the accuracy of the three algorithms~ours,
Filippova’s, and Lin’s! we measure an error~E! on the fine
lattice as

E5S (
z

@ux~z!2Ux~z!#2

(
z

Ux
2~x!

D 1/2

, ~13!

whereux(z) is the simulated velocity and

Ux~z!54Uc

zDr f

D S 12
zDr f

D D
is the theoretical velocity. Figure 2 presents this error
tc516e1 . We observe that the Filippova model and o
approach have the same error that is close to the comp
tional numerical error. However, for 12131023<tc<1
1131023 the Filippova model blows up and is cons
quently unreliable. On the other hand, we note that the
model, which does not rescale the fields, has a larger er

Grid refinement techniques require an increase of
computer memory. It can be estimated easily. If the a
which is refined is of sizeN3M , then (z11)3nref3N
3M new fields must be defined. In our current implemen
tion, the fine and coarse grids are defined as two logic
distinct data structures. A local and adaptative refinemen
also possible but it requires to define hierarchical data st

-

d
th
7-4
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FIG. 2. Error defined by Eq.
~13! on the fine lattice considering
tc516e1 for the three presented
algorithms. The error is presente
for ~a! negative and~b! positive
values ofe1 .
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tures to embed the finer grid in the coarser one. An e
more difficult programming problem arises when paralleliz
tion is considered on a dynamical grid. These questions
not further discussed here as this paper focuses on con
tual issues.

IV. FLOW SETTLEMENT ACCELERATION BY USING A
MULTIGRID APPROACH

A. Description

We now describe a useful utilization of the grid refin
ment techniques: the acceleration of the flow settlement.
deed, a non-negligible part of the computation time is
voted to settle the flow. Thus, one is interested in reduc
this time by accelerating the flow settlement process.

Note that the finer the lattice, the longer the time to se
the flow ~this time goes asRe

2 @4#!. So considering a lattice
L0 with a spacingDr05Dr , we propose to settle the flow o
a latticeL1 twice as coarse asL0 , i.e., with a lattice spacing
Dr152Dr , and use the flow inL1 as an initial condition for
L0 . To settle the flow onL1 , one can again consider
coarser latticeL2 , and so on. Hence, we have a hierarchi
process iterated, times which turns out to accelerate th
flow settlement process.

Let us present the way to connect two successive latti
We learned from the experiments presented above that
the nonequilibrium part has to be rescaled. However, con
ering that the connection between latticesLi and Li 11 is
made once, it is unnecessary to proceed to this resca
Indeed, the equilibrium part is a sufficient approximation
start the computation on next level. Hence, fine fields co
mon to both lattices are set with coarse fields without mo
fication and the others are spatially interpolated.

A stopping criterion is needed to terminate automatica
the process on latticeLi and to start the process on lattic
Li 21 . There are various ways to interrupt the process w
convergence is reached. For instance, a simple one con
in stopping the flow if the difference between two give
successive values in time is smaller than a given valuee ref .
The quantitye ref requires a special attention as its value m
dramatically change the speedup~see below!. On the other
hand, if a specific characteristic of the flow is known befo
the simulation, one can use it to impose the stopping cr
rion.
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Our way to accelerate the flow settlement process is s
marized in algorithm 4.1.

Algorithm 4.1. Algorithm for the acceleration of the flow
settlement process.
~1! Allocate memory space for latticeL, ~the coarser one!.
~2! Initialize L, , e.g., with the equilibrium distribution func

tions.
~3! Repeat collision-propagation steps until the stopping

terion is reached.
~4! For i 5,21 down to 0,~a! allocate memory space fo

lattice Li , ~b! initialize the density distributions using
data from latticeLi 11 , ~c! spatially interpolate the miss
ing density distributions,~d! deallocate memory spac
for latticeLi 11 , ~e! repeat collision-propagation steps o
lattice Li until the stopping criterion is reached.

~5! Continue the simulation with an established flow on l
tice L0 .

B. Application

We apply this hierarchical process to settle a LBG
D2Q9 Poiseuille flow on a longitudinally periodic 103Nz
lattice. The flow is settled by imposing a constant body fo
and the Inamuro nonslip boundary condition. We set the v
cosity ton50.005 and the maximum velocity toUc50.1.

One can determine the benefit of considering such a h
archical algorithm by computing a speedup. The speedu
the flow settlement process is defined as

S,5
T0

T,
,

whereTi is the computation time necessary to reach a s
tionary state when starting the computation at refinem
level i. Then considering a refinement at level,, the quantity
S, indicates how many times the flow settlement proc
goes faster than with the finer gridL0 .

The stopping criterion we consider for this applicatio
consists in computing the difference between the theoret
and simulated velocity profiles and stopping the proc
when this difference is smaller thane ref . Effects of using
other criteria are investigated in Ref.@4#.

Figure 3 reports the evolution of the velocity in th
middle of a channel of heightNz5257 when zero and seve
7-5
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FIG. 3. Evolution of the veloc-
ity in the middle of a LBGK
D2Q9 103257 channel. The
stopping criterion allows the
simulation to reach the stead
state (e ref510216). ~a! Zero and
~b! seven refinement levels hav
been considered. Iterations ar
measured in the common unitDt.
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refinement levels are considered. The quantitye ref is first set
to 10216. We notice the exponential form of the curves a
the cusps indicating that a new finer lattice is considered
initialized by the previous one, without rescaling the no
equilibrium parts.

Figure 3~a! indicates that, after'33104 iterations, the
middle velocity has almost reached its steady value. Ho
ever, 53104 iterations are needed to perform the simulatio
Figure 3~b! shows that the first 33104 iterations needed in
~a! are avoided by the acceleration process. However,
still needs to perform the second part to satisfy the rat
demanding stopping criterion we are considering. In t
case, the speedup is only around 2, as only the first p
representing half of the number of iterations, can be avoid

However, in many applications, one can be satisfied
a flow that has not completely reached its steady st
For instance, one may typically consider to deal with a fl
that has reached 99% of its steady state. Speedups ar
pected to be much higher when one considers a higher v
of e ref .

Figure 4 reports speedups for which two lattice heig
and two values ofe ref have been considered. We observe
significant speedup enhancement from 200 up to 2000
this two-dimensional~2D! application, only one dimension i

refined, as explained above. The curves behave as 2ref
l 2 for

low refinement levels~the power of 2 is because not only th
number of iterations are doubled but also the computatio
time needed to perform an iteration!. This relation does no
stand for larger, as the overhead due to latticesL1...,21

becomes higher. However, we note that the curves satu
only at the end. This implies that it is better to consider
largest possible number of refinement levels.

We also remark that the lower the quantitye ref the higher
the speedups. This is due to the fact that a low value ofe ref
implies a complete or a partial avoidance of the last ite
tions needed for machine precision. Consequently, the
portion of iterations which can be suppressed becomes la
as we accept less accuracy.

Figure 4 also highlights size effects by showing a spee
four times bigger when the height is doubled~factor of 4
between dashed and solid curves!. This factor of 4 in the
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CPU is due to the fact that there are twice the number of s
to update and, also, because the number of iterations ne
to converge doubles.

The above results indicated that even larger speedups
be expected in 3D applications.

V. CONCLUSION

In this contribution, we began by reviewing the existin
lattice Boltzmann grid refinement algorithms. We highlight
their weaknesses and proposed an alternative one, more
eral and yet simpler. Through experiments and theoret
arguments, we concluded that our algorithm always produ
correct results.

We also applied our multigrid techniques in order to spe
up the flow settlement process, which is often a time c
suming process. By choosing an appropriate stopping c
rion, we could gain a factor between 200 and 2000. We
gued that this speedup should be higher when conside
3D lattices.

FIG. 4. Speedups of the flow settlement process of a LB
D2Q9 Poiseuille flow on a 103Nz lattice. Nz5257 ~solid! and
Nz5513 ~dashed! have been considered. The stopping criterion
satisfied when the difference between theoretical and simulated
files is smaller thane ref51022 ~s! ande ref51023 ~1!.
7-6



-

e,

th

-

THEORY AND APPLICATIONS OF AN ALTERNATIVE . . . PHYSICAL REVIEW E 67, 066707 ~2003!
@1# S. Succi,The Lattice Boltzmann Equation, For Fluid Dynam
ics and Beyond~Oxford University Press, Oxford, 2001!.

@2# B. Chopard and M. Droz,Cellular Automata Modeling of
Physical Systems~Cambridge University Press, Cambridg
1998!.

@3# Proceeding of the Seventh International Conference on
Discrete Simulation of Fluid Dynamics, edited by B. Bogho-
sianet al., special issue of Int. J. Mod. Phys. C9 ~1998!.

@4# A. Dupuis, Ph.D. thesis, University of Geneva, 2002~unpub-
lished!, see http://cui.unige.ch/spc/PhDs/aDupuisPhD/

@5# M. Bernaschi and S. Succi, Int. J. Mod. Phys. B17, 1 ~2003!.
@6# B. Chopard, A. Dupuis, A. Masselot, and P. Luthi, Adv. Com
06670
e

plex Syst.5, 1 ~2002!.
@7# S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech.30, 329

~1998!.
@8# Y. H. Qian, S. Succi, and S. A. Orszag, inRecent Advances in

Lattice Boltzmann Computing, edited by Dietrich Stauffer, An-
nual Reviews of Computational Physics Vol. III~World Scien-
tific, Singapore 1996!, pp. 195–242.

@9# A. Dupuis and B. Chopard, J. Comput. Phys.178, 161~2002!.
@10# O. Filippova and D. Ha¨nel, J. Comput. Phys.147, 219 ~1998!.
@11# C. L. Lin and Y. Lai, Phys. Rev. E62, 2219~2000!.
@12# T. Inamuro, M. Yoshino, and F. Ogino, Phys. Fluids7, 2928

~1995!.
7-7


